1.5 Electric Potential \
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From vector analysis it is well-known that if the curl of a vector vanishe ’ f'l"”_‘, the Ve,
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means that the electrostatic field 4 is conservative and it can be written as the B iy

of some scaler ¢ as 1y = Vi, where Lthe negative sign 1s chosen lor convenienen The

scalar function ¢ thus introduced is known as eleclrostatic polential.

To show that ¥V x /2 = 0 we first consider the electric field at the position 7 dye

point charge ¢ located at 7. This is
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Substituting these results in FEq. (1.5-2) we get
T F=0. - (1.0-3)

From the principle of superposition we known that the total ficld due to any charge
distribution is given by the vector sum of the fields due to individual charges. So we can
say that the result (1.5-3) holds for any charge distribution. Thevefore. we can write

E = —-Vg. (1.5-4)
.I'I . —_ —

_oince V{p+ constant) = V¢, the potential ¢ defined by (1.5-4) is arbitrary by some
additive constant. Addition of a constaut to ¢ yields the same electric ficld. Morcover, it
does not affect the potential difference between two points because the constants caneel
out. The absolute value of potential is of no importance, only potential differences have

/ .

physical significance. To get a physical significance of the electrostatic potentiaffer us



physical significance) To get a physical significance of the electrostatic potent) let s
calculate the work dope against the field in moving a unit positive charge from a reference
poiut a to the point b. This is

W, = — work done by the field

b _ b b .
- E-rir‘:/ w-dr:/ do = d(b) — ola). (1.5-5)

_-Obviously the work done dépends only on the positions @ and b and not on the path
connecting them. This indicates that the work done over any close path is zero. This
result can be easily obtained from Eq. (1.5-3) by using Stokes’ theoreimn, -

% E-n!-r-'=/ (¥ x E)-d5 =0, (1.5-G)
C' )
, s ; -
where € is the contour bounding an open surface 5.
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where C 1y the LUI]T'UU]" DOounding an open suriace o.

This must I:-c: 50 because electrostatic foree is conservitive. Equation (1.5-5) sugpests

that the electrostatic potential may be considered as poltential energy pcér unit charge.
If the charge distribution that creates the electric field is localised in a finite region of
space the electric field vanishes at infinite distances fromn the charge distribution. Then
one usually takes the reference point a at infinity, where the potential is taken to he
zero: ¢p(oo) = 0. In this case Eq. (1.5-5) gives

b |

h ) = —f IS - dr. (L.5-7)
)

Now, as the electric field is the force per unit positive change., the electrostatic potential

at. any point (b) may be defifed as the work done by an eaternal agency tn bringing a
untl positive charge from infinity to that point.

If the same reference point is chosen for the electrostatic potential and potential
cuergy then the potential energy of a charge is given by tlhe product of the charge and
the electric potential at the location of the charge.
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Equipotential surfaces

A'”.- cquipotential surface is the locus of points having the same potential. In case of a
]].]I'I‘Il (‘lh‘l.l'gﬂ ( located at Lhe origin, the pﬂtentml at a distance r from the Or1gin 18
given by
L1 q !
b() = ——- 1.
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Obviously a sphere of radius » with the centre at g will be an equipotential surface.
In this case, all concentric spheres with the centre at ¢ will be equipotential surlaces
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Obviously a sphere of radius » with the centre at g will be an equipotential surface.
In this case, all concentrie spheres with the centre at ¢ will be equipotential surfaces
(Fig 151). In general the shape of the equipotential surface depends on the charge
configuration. But whatever may be its shape the relation fo = -—‘ﬁ'r,b indicates that
the clectric ficld E is always perpendicular to the cquipolential surfuce, ¢ = constant, at
every point,
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Fig 1.5-1: Field lines and equipotential surfaces
for a point charge.




‘H",Adi'antage of the potential concept

_Electric field E is a vector quantity. Its direct calculation very often becomes tedious
and cumbersome. On the other hand, potential ¢ is a scalar quantity. In many cases its
calculation is found to be easier. The potential concept reduces a vector problemn down
Lo a scalar one. So in practice it is often preferable to determine E by first calculating
& and then using the relation £ = —Va, instead of dete Fnining E directly.
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POTENTIAL DUE TO AN ELECTRIC DIPOLE

Substituting in above relation
r 1 ] 1
V=—g—Q [ —
nE, r-a cost) r+a cosh
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